3.1371 \(\int \frac{1}{\sqrt{b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ -\frac{2 \sqrt{b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{\sqrt{d} \left (b^2-4 a c\right )^{3/4} \sqrt{a+b x+c x^2}} \]

[Out]

(-2*Sqrt[b*d + 2*c*d*x])/((b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[-((c*
(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 -
4*a*c)^(1/4)*Sqrt[d])], -1])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]*Sqrt[a + b*x + c*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.336274, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143 \[ -\frac{2 \sqrt{b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{\sqrt{d} \left (b^2-4 a c\right )^{3/4} \sqrt{a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]  Int[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[b*d + 2*c*d*x])/((b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[-((c*
(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 -
4*a*c)^(1/4)*Sqrt[d])], -1])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]*Sqrt[a + b*x + c*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 74.9128, size = 131, normalized size = 0.96 \[ - \frac{2 \sqrt{b d + 2 c d x}}{d \left (- 4 a c + b^{2}\right ) \sqrt{a + b x + c x^{2}}} - \frac{4 \sqrt{\frac{c \left (a + b x + c x^{2}\right )}{4 a c - b^{2}}} F\left (\operatorname{asin}{\left (\frac{\sqrt{b d + 2 c d x}}{\sqrt{d} \sqrt [4]{- 4 a c + b^{2}}} \right )}\middle | -1\right )}{\sqrt{d} \left (- 4 a c + b^{2}\right )^{\frac{3}{4}} \sqrt{a + b x + c x^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

-2*sqrt(b*d + 2*c*d*x)/(d*(-4*a*c + b**2)*sqrt(a + b*x + c*x**2)) - 4*sqrt(c*(a
+ b*x + c*x**2)/(4*a*c - b**2))*elliptic_f(asin(sqrt(b*d + 2*c*d*x)/(sqrt(d)*(-4
*a*c + b**2)**(1/4))), -1)/(sqrt(d)*(-4*a*c + b**2)**(3/4)*sqrt(a + b*x + c*x**2
))

_______________________________________________________________________________________

Mathematica [C]  time = 0.381793, size = 150, normalized size = 1.09 \[ -\frac{2 \sqrt{d (b+2 c x)} \left (\sqrt{-\sqrt{b^2-4 a c}}+2 i \sqrt{b+2 c x} \sqrt{\frac{c (a+x (b+c x))}{(b+2 c x)^2}} F\left (\left .i \sinh ^{-1}\left (\frac{\sqrt{-\sqrt{b^2-4 a c}}}{\sqrt{b+2 c x}}\right )\right |-1\right )\right )}{d \sqrt{-\sqrt{b^2-4 a c}} \left (b^2-4 a c\right ) \sqrt{a+x (b+c x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d*(b + 2*c*x)]*(Sqrt[-Sqrt[b^2 - 4*a*c]] + (2*I)*Sqrt[b + 2*c*x]*Sqrt[(
c*(a + x*(b + c*x)))/(b + 2*c*x)^2]*EllipticF[I*ArcSinh[Sqrt[-Sqrt[b^2 - 4*a*c]]
/Sqrt[b + 2*c*x]], -1]))/(Sqrt[-Sqrt[b^2 - 4*a*c]]*(b^2 - 4*a*c)*d*Sqrt[a + x*(b
 + c*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.044, size = 206, normalized size = 1.5 \[ 2\,{\frac{\sqrt{c{x}^{2}+bx+a}\sqrt{d \left ( 2\,cx+b \right ) }}{d \left ( 4\,ac-{b}^{2} \right ) \left ( 2\,{x}^{3}{c}^{2}+3\,{x}^{2}bc+2\,acx+{b}^{2}x+ab \right ) } \left ({\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}+2\,cx+b \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

2*(EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2)
,2^(1/2))*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(
1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*
c+b^2)^(1/2))^(1/2)+2*c*x+b)*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x+b))^(1/2)/(4*a*c-b^2)
/d/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)),x, algorithm="fricas")

[Out]

integral(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{d \left (b + 2 c x\right )} \left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(1/(sqrt(d*(b + 2*c*x))*(a + b*x + c*x**2)**(3/2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)),x, algorithm="giac")

[Out]

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)